Causality Explains Why Spatial and Temporal Translations Commute: A Remark

Vladik Kreinovich¹

Received July 24, 1995

Under reasonable assumptions, it is proven that if a space-time has symmetries of translation type, then these symmetries form a commutative group.

Historically, the first physics-oriented nonplanar geometric models of space-time (proposed by Einstein) were smooth manifolds. However, it turned out that in the general case, physical space-times cannot be described by smooth manifolds: first, due to the equations of general relativity, they have singularities (Misner et al., 1973), and second, due to quantum effects. space-times are locally nonsmooth. Therefore, a more general mathematical description of space-time is needed. A natural idea is to use for describing space-time a structure that is more physically fundamental than the structure of a smooth manifold. The most fundamental structure related to space-time is the structure of causality; therefore, Buseman (1967), Kronheimer and Penrose (1967), and Pimenov (1970) suggested to describe a space-time as an ordered set (M, \leq) , with $a \leq b$ meaning that an event a can causally influence an event b. In Newtonian physics, if two events a and b are simultaneous, they can influence each other; in other words, we have $a \le b$ and $b \leq a$ and therefore \leq is not an order. Since Einstein, however, it is believed that such instantaneous action is impossible. In view of that, we will assume that \leq is an order.

Definition 1. By a space-time, we mean an ordered set (M, \leq) that has at least one pair (a, b). A 1-1 mapping $g: M \to M$ is called a symmetry if it preserves causality, i.e., if for every a and b, $a \leq b$ iff $g(a) \leq g(b)$.

¹Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968; e-mail: vladik@cs.utep.edu.

Comments

• It is easy to see that symmetries form a group.

• Observers inside the space-time use numbers to describe the events. A function $x: M \to R$ that assigns numbers to events will be called a *coordinate*. Since we consider symmetric space-times (with symmetries generalizing translations in space-time), it is reasonable to consider only *inertial* coordinates, i.e., coordinates in which "translations" from the group G act as shifts $x \to x + \text{const.}$ Of special interest are *temporal coordinates t*, i.e., coordinates in which if a can causally influence b, then $t(a) \leq t(b)$.

In special relativity, not only is it true that every time when $a \le b$, we have $t(a) \le t(b)$ for all temporal coordinates t, but the inverse is also true: the only reason why for some pairs of events a cannot influence b is that in some inertial coordinates, the time of b precedes the time of a. It is reasonable to make a similar assumption for our general case as well. Let us formulate it in mathematical terms.

Definition 2. Let (M, \leq) be a space-time, and let G be a group of symmetries of M.

- By a *coordinate*, we understand a function $x: M \rightarrow R$.
- A coordinate x is called *inertial* if for every $g \in G$ there exists a number $s_x(g)$ such that $x(g(a)) = x(a) + s_x(g)$ for all a.
- A coordinate x is called *temporal* if $x(a) \le x(b)$ whenever $a \le b$.
- A pair (M, G) is called *natural* if the following condition holds: For every a, b, if $t(a) \le t(b)$ for all inertial temporal coordinates t, then $a \le b$.

Proposition. Let (M, \leq) be a space-time, and let G be a group of symmetries of M. If (M, G) is a natural pair, then the group G is commutative (i.e., $g_1g_2 = g_2g_1$ for all $g_i \in G$).

Proof. 1. Let us first prove that for every inertial coordinate x and for every $g_1, g_2 \in G$, we have $s_x(g_1g_2) = s_x(g_1) + s_x(g_2)$.

Indeed, for every x and for every $a \in M$, we have

$$x(g_1(g_2(a))) = x(g_2(a)) + s_x(g_1) = x(a) + s_x(g_2) + s_x(g_1)$$

On the other hand, $x(g_1(g_2(a))) = x(g_1g_2(a)) = s_x(g_1g_2) + x(a)$. Equating the resulting two expressions for $x(g_1(g_2(a)))$, we get the desired equality.

2. Let us finally prove that for every a, we have $g_1g_2 = g_2g_1$.

Indeed, for every a and for every temporal inertial coordinate t, we have $t(g_1g_2(a)) = s_t(g_1) + s_t(g_2) + t(a)$ and similarly have $t(g_2g_1(a)) = s_t(g_1) + s_t(g_2) + t(a)$. Hence, for every t, $t(g_1g_2a) = t(g_2g_1a)$ and therefore, $t(g_1g_2a) \ge t(g_2g_1a)$. Since the pair (M, G) is assumed to be natural, it follows

that $g_1g_2(a) \ge g_2g_1(a)$. Similarly, $g_2g_1(a) \ge g_1g_2(a)$. Since \le is an order, we conclude that $g_1g_2(a) = g_2g_1(a)$ for all a, i.e., that $g_1g_2 = g_2g_1$. QED

Comment. This simple proof was influenced by the results presented (for topological groups) in Gładysz (1962, 1964) and Charin (1966, p. 139).

ACKNOWLEDGMENTS

This work was partially supported by NSF Grants CDA-9015006 and EEC-9322370, and by NASA Research Grant 9-757. The author is thankful to all the participants of the Novosibirsk seminar on chronogeometry, especially to Alexander D. Alexandrov, and to Piotr Wojciechowski (El Paso, Texas) for valuable discussions.

REFERENCES

Busemann, H. (1967). Timelike Spaces, PWN, Warsaw.

- Charin, V. S. (1966). Topological groups, in Algebra. 1964, VINITI, Moscow, pp. 123-160 [in Russian].
- Gładysz, S. (1962). Maximale Untersemigruppen und Konvexität in Gruppen, Colloquium Mathematicum, 9(2).
- Gładysz, S. (1964). Convex topology in groups and Euclidean spaces, Bulletin de l'Academie des Sciences, Serie des Sciences Mathematiques, Astronomiques, et Physiques, 12(1), 1–4.
- Kronheimer, E. H., and Penrose, R. (1967). On the structure of causal spaces, Proceedings of the Cambridge Philosophical Society, 63(2), 481-501.

Misner, C. W., Thorne, K. S., and Wheeler, J. W. (1973). Gravitation, Freeman, San Francisco.

Pimenov, R. I. (1970). Kinematic Spaces: Mathematical Theory of Space-Time, Consultants Bureau, New York.